Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Cancer Research and Treatment ; : 40-53, 2022.
Article in English | WPRIM | ID: wpr-913820

ABSTRACT

Purpose@#We investigated the feasibility of using an anatomically localized, target-enriched liquid biopsy (TLB) in mouse models of lung cancer. @*Materials and Methods@#After irradiating xenograft mouse with human lung cancer cell lines, H1299 (NRAS proto-oncogene, GTPase [NRAS] Q61K) and HCC827 (epidermal growth factor receptor [EGFR] E746-750del), circulating (cell-free) tumor DNA (ctDNA) levels were monitored with quantitative polymerase chain reaction on human long interspersed nuclear element-1 and cell line-specific mutations. We checked dose-dependency at 6, 12, or 18 Gy to each tumor-bearing mouse leg using 6-MV photon beams. We also analyzed ctDNA of lung cancer patients by LiquidSCAN, a targeted deep sequencing to validated the clinical performances of TLB method. @*Results@#Irradiation could enhance the detection sensitivity of NRAS Q61K in the plasma sample of H1299-xenograft mouse to 4.5- fold. While cell-free DNA (cfDNA) level was not changed at 6 Gy, ctDNA level was increased upon irradiation. Using double-xenograft mouse with H1299 and HCC827, ctDNA polymerase chain reaction analysis with local irradiation in each region could specify mutation type matched to transplanted cell types, proposing an anatomically localized, TLB. Furthermore, when we performed targeted deep sequencing of cfDNA to monitor ctDNA level in 11 patients with lung cancer who underwent radiotherapy, the average ctDNA level was increased within a week after the start of radiotherapy. @*Conclusion@#TLB using irradiation could temporarily amplify ctDNA release in xenograft mouse and lung cancer patients, which enables us to develop theragnostic method for cancer patients with accurate ctDNA detection.

2.
Clinical and Molecular Hepatology ; : 144-156, 2021.
Article in English | WPRIM | ID: wpr-874437

ABSTRACT

Background/Aims@#The abscopal effect, a rare phenomenon induced by radiation, can be reinforced by immunotherapy. Although radiation therapy and immunotherapy are increasingly being utilized for the treatment of hepatocellular carcinoma (HCC), whether immunotherapy could boost the abscopal effect remains unclear. In this study, we aimed to elucidate the immunological mechanisms underlying the abscopal effect induced by the combination of irradiation and immunotherapy in a murine HCC model. @*Methods@#A syngeneic HCC mouse model was established by transplanting murine Hepa 1–6 HCC cells into both hind legs of immunocompetent C57BL/6 mice. The tumors on the right hind legs were irradiated, and abscopal effects were observed in the non-irradiated tumors on the left hind leg with or without the coadministration of anti-programmed cell death 1 (PD-1) antibodies. Flow cytometric analyses were performed to analyze the distributions of immune cells infiltrating both irradiated and non-irradiated tumors and the tumor-draining lymph nodes (TDLNs). @*Results@#Administration of 16 Gy in two fractions more effectively inhibited the growth of both irradiated and nonirradiated tumors with higher tumor infiltration of cytotoxic T cells than 8 Gy did in a single fraction. The higher dose also increased activated dendritic cells in TDLNs, which had higher expression of the programmed cell death ligand 1. Coadministration of anti-PD-1 antibodies significantly enhanced the abscopal effect and increased infiltration of activated cytotoxic T cells in both irradiated and non-irradiated tumors. @*Conclusions@#Our findings show that adding anti-PD-1 therapy to radiation enhanced the abscopal effect in a syngeneic murine model of HCC.

3.
Radiation Oncology Journal ; : 223-229, 2016.
Article in English | WPRIM | ID: wpr-39692

ABSTRACT

PURPOSE: This study is to investigate the effect of captopril when combined with irradiation. MATERIALS AND METHODS: 4T1 (mouse mammary carcinoma) cells were injected in the right hind leg of Balb/c mice. Mice were randomized to four groups; control (group 1), captopril-treated (group 2), irradiated (group 3), irradiated and captopril-treated concurrently (group 4). Captopril was administered by intraperitoneal injection (10 mg/kg) daily and irradiation was delivered on the tumor-bearing leg for 15 Gy in 3 fractions. Surface markers of splenic neutrophils (G-MDSCs) and intratumoral neutrophils (tumor-associated neutrophils [TANs]) were assessed using flow cytometry and expression of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor 1 alpha (HIF-1α) of tumor was evaluated by immunohistochemical (IHC) staining. RESULTS: The mean tumor volumes (±standard error) at the 15th day after randomization were 1,382.0 (±201.2) mm³ (group 1), 559.9 (±67.8) mm³ (group 3), and 370.5 (± 48.1) mm³ (group 4), respectively. For G-MDSCs, irradiation reversed decreased expression of CD101 from tumor-bearing mice, and additional increase of CD101 expression was induced by captopril administration. Similar tendency was observed in TANs. The expression of tumor-necrosis factor-associated molecules, CD120 and CD137, are increased by irradiation in both G-MDSCs and TANs. Further increment was observed by captopril except CD120 in TANs. For IHC staining, VEGF and HIF-1α positivity in tumor cells were decreased when treated with captopril. CONCLUSION: Captopril is suggested to have additional effect when combined to irradiation in a murine tumor model by modulation of MDSCs and angiogenesis.


Subject(s)
Animals , Mice , Angiotensin-Converting Enzyme Inhibitors , Captopril , Flow Cytometry , Hypoxia-Inducible Factor 1 , Injections, Intraperitoneal , Leg , Neutrophils , Radiotherapy , Random Allocation , Triacetoneamine-N-Oxyl , Vascular Endothelial Growth Factor A
4.
Radiation Oncology Journal ; : 337-343, 2015.
Article in English | WPRIM | ID: wpr-70159

ABSTRACT

PURPOSE: The purpose of this report is to describe the proton therapy system at Samsung Medical Center (SMC-PTS) including the proton beam generator, irradiation system, patient positioning system, patient position verification system, respiratory gating system, and operating and safety control system, and review the current status of the SMC-PTS. MATERIALS AND METHODS: The SMC-PTS has a cyclotron (230 MeV) and two treatment rooms: one treatment room is equipped with a multi-purpose nozzle and the other treatment room is equipped with a dedicated pencil beam scanning nozzle. The proton beam generator including the cyclotron and the energy selection system can lower the energy of protons down to 70 MeV from the maximum 230 MeV. RESULTS: The multi-purpose nozzle can deliver both wobbling proton beam and active scanning proton beam, and a multi-leaf collimator has been installed in the downstream of the nozzle. The dedicated scanning nozzle can deliver active scanning proton beam with a helium gas filled pipe minimizing unnecessary interactions with the air in the beam path. The equipment was provided by Sumitomo Heavy Industries Ltd., RayStation from RaySearch Laboratories AB is the selected treatment planning system, and data management will be handled by the MOSAIQ system from Elekta AB. CONCLUSION: The SMC-PTS located in Seoul, Korea, is scheduled to begin treating cancer patients in 2015.


Subject(s)
Humans , Cyclotrons , Helium , Korea , Metallurgy , Particle Accelerators , Patient Positioning , Proton Therapy , Protons , Radiation Oncology , Respiratory System , Seoul
SELECTION OF CITATIONS
SEARCH DETAIL